Multifrequency Interferometric Imaging with Intensity-Only Measurements | SIAM Journal on Imaging Sciences | Vol. 10, No. 3 | Society for Industrial and Applied Mathematics

نویسندگان

  • Miguel Moscoso
  • Alexei Novikov
  • George Papanicolaou
  • Chrysoula Tsogka
چکیده

We propose an illumination strategy for interferometric imaging that allows for robust depth recovery from intensity-only measurements. For an array with colocated sources and receivers, we show that all the possible interferometric data for multiple sources, receivers, and frequencies can be recovered from intensity-only measurements provided that we have sufficient source location and frequency illumination diversity. There is no need for phase reconstruction in this approach. Using interferometric imaging methods we show that in homogeneous media there is no loss of resolution when imaging with intensities only. If in these imaging methods we reduce incoherence by restricting the multifrequency interferometric data to nearby array elements and nearby frequencies we obtain robust images in weakly inhomogeneous background media with a somewhat reduced resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifrequency Interferometric Imaging with Intensity-Only Measurements

We propose an illumination strategy for interferometric imaging that allows for robust depth recovery from intensity-only measurements. For an array with colocated sources and receivers, we show that all the possible interferometric data for multiple sources, receivers and frequencies can be recovered from intensity-only measurements provided that we have sufficient source location and frequenc...

متن کامل

The Little Engine That Could: Regularization by Denoising (RED) | SIAM Journal on Imaging Sciences | Vol. 10, No. 4 | Society for Industrial and Applied Mathematics

Removal of noise from an image is an extensively studied problem in image processing. Indeed, the recent advent of sophisticated and highly effective denoising algorithms has led some to believe that existing methods are touching the ceiling in terms of noise removal performance. Can we leverage this impressive achievement to treat other tasks in image processing? Recent work has answered this ...

متن کامل

Signal Intensity of High B-value Diffusion-weighted Imaging for the Detection of Prostate Cancer

Background: Diffusion-weighted imaging (DWI) is a main component of multiparametric MRI for prostate cancer detection. Recently, high b value DWI has gained more attention because of its capability for tumor characterization. Objective: To assess based on histopathological findings of transrectal ultrasound (TRUS)-guided prostate biopsy as a reference, an...

متن کامل

Factors influencing the pattern and intensity of myocardial 18F-FDG uptake in oncologic PET-CT imaging

Introduction:Myocardial 18F-FDG uptake is highly variable in oncologic whole body 18F-FDG PET/CT studies, ranging from quite intense to minimal distribution. Intense or heterogeneous myocardial 18F-FDG uptake is undesirable as it may interfere with the visual or quantitative evaluation of tumoral invasion and metastases in pericardium, myocardiu...

متن کامل

Optimization of Imaging Parameters in Micro-CT Scanner Based On Signal-To-Noise Ratio for the Analysis of Urinary Stone Composition

Introduction: Micro-CT scanner with a resolution of about 5 micrometers is one of the modalities used to create three-dimensional/two-dimensional images of urinary stones. This study aimed to optimize imaging parameters in micro-computed tomography (CT) scanner based on the signal-to-noise ratio (SNR) of urinary stones for the analysis of stone composition. <stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017